
Lecture 13:
Beam deflection

• Applications in nanotechnology

• Governing differential equations

• Solving beam deflection through 
integration

• Solving beam deflection through 
superposition

• Statically indeterminate beam 
deflection
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Atomic Force Microscopy 2

▪ Single molecule resolution

▪ High resolution imaging in aqueous 

solution

▪ Nanomanipulation

▪ Single molecule mechanics

▪ Imaging of living cells

A versatile tool for nanoscale biology

Source: veeco.com



Cantilever

Laser

Cantilever

Surface

Photodetector

AFM: a Versatile Tool for 
Nanoscale Measurements

conductivity, surface potential, electrochemical potential, 
ion currents, magnetism, NMR….and many more

T. 
Eguchi 
et al.

4.2nm



•

Single molecule resolution

▪ Single molecules can 
be easily resolved

▪ Even the double helix!

Plasmid DNA on mica

Pyne et al. Small, 10, Nr16, 2014

Source: SciencePhotoLibrary



Self-assembly 
and defect 
healing in DNA 
lattices
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80Hz line rate (512x512 pixel) (tube, XY=14um)
DNA sample preparation in collaboration with 

Bastings Lab

Defect healing in DNA-lattices

Nievergelt et al, Small Methods 2019

100kHz ORT rate, 80Hz line rate (512x512 pixel) (tube, XY=14um)



Single Molecule 
Force Spectroscopy
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Force resolution: 10s of pN; limited by thermal motion of the cantilever



Single molecule force spectroscopy
8

Force curves as a tool for single molecule mechanics

Image source: Dr Lorna Dougan - http://www1.mnp.leeds.ac.uk/ldougan/



AFM cantilever beam
9

▪ In order to measure very fine features, the cantilever 
probe needs to be very sharp and sensitive

▪ The deflection of the cantilever has to be measured very 
precisely

▪ Two methods are often used:

• Optical beam deflection

• Piezoelectric strain sensing

The gate to the nanoworld



Beam bending

• We bend the cantilever beam by applying 
a load at the end

• w(x) describes the amount of deflection 
of the point on the cantilever from the 
zero axis

• Two points are a distance ds apart from 
each-other on the bent beam

• From this we can get a relationship that 
describes the curvature of the beam

q

w

m1

m2

w
w+dw

dx

ds
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m2

ds

ρdθ

θ θ+dθ

dθ
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Beam bending -
Governing equation

We want to find a relationship 
between the beam deflection at a 
point x on the beam as a function of 
the load

We find 4 differential equations that 
relate loads to the deflection and the 
angle
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Beam bending-Boundary 
condition

To solve for the beam bending equation through
integration, we need boundary conditions

The type of support of the beam at its end
determines the internal forces and moments at
the ends, as well as its geometry

We have therefore two types of boundary
conditions:

• Static boundary conditions: These come 
from static equilibrium and pertain to 
force related quantities (V,M)

• Kinematic boundary conditions: these 
define the deformational and geometric 
constraints for the angle and the 
bending
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Beam bending - Abrupt 
changes

13

▪ When we have mathematical discontinuities due to an abrupt change in load 
or stiffness, we supplement our boundary conditions with the physical 
requirement that the neutral axis must be continuous!

▪ Deflection and tangent needs to be the same coming from both sides of the 
point of discontinuity:



Beam deflection
14

▪ If we want to solve beam equation through integration, we need to integrate 4 
times:

▪ We know already that:

▪ Therefore:
• We get C1 and C2 from the boundary conditions of M(x) and V(x)

• We get C3 from the boundary condition of the angle of deflection and C4 from the 
boundary condition of w

▪ Solving through integration



Beam deflection –
Solving through 
superposition

• As long as the beams behave linearly elastic, we are 
dealing with linear differential equations.

• For such a situation, we can separate a difficult load 
profile into simpler sub parts:

• We can then do the integrations over the individual qi

separately.

• To find the solution for the deflection due to the 
complex load profile, we can just sum up the 
deflections caused by the sub-loads qi.

• We can tabulate the deflection formulas due to 
standard loads.
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Statically indeterminate 
beams –
Solving through integration
Often beams are supported more 
that absolutely required for static 
equilibrium.

A cantilever that is supported also on 
it’s unmounted end is considered a 
“proper cantilever”

We treat over constrained beams in 
bending just like normal beams. The 
static indeterminacy is solved 
automatically through the use of the 
boundary conditions to calculate the 
integration constants. 
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Example:
Statically indeterminate 
beams
▪ Solve the following statically 

indeterminate system through 
integration of the beam deflection 
differential equations. Calculate: 
• deflection

• shear forces

• bending moments

• slopes

▪ Approach:
• Set up load equation q(x)

• Integrate the differential equations

• Solve for the reaction forces using the 
boundary conditions
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Beam Buckling

• Euler Buckling

• Effective length for buckling

• Effect of eccentricity
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Stability- different criteria for 
resisting loads
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Strength: the ability of a structure to withstand a load 
without the development of excessive stress

Stiffness: the ability of a structure to withstand a load 
without developing excessive deformation.

Stability: the ability of a structure to withstand a load 
without experiencing a sudden change in configuration 



Buckling
20



Buckling is important from the macro to the 
microscale
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Buckling

▪ Buckling is a type of instability that 
occurs when a beam fails under a 
compressive load much smaller than the 
load necessary to reach the yield stress

▪ In buckling, the failure occurs because 
the applied load results in a sudden 
deformation in a perpendicular direction.
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Euler Buckling

Two regimes of deformation when a beam is 
loaded in compression:

1. If the axial load on a beam is small, the 
change in length will be due to compressive 
strain. P<Pcr

2. If the axial load on a beam P is larger than 
the critical load Pcr, then the beam becomes 
instable and a small perturbation will result 
in buckling of the beam.
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Euler Buckling

We can derive the Euler Buckling 
formula using the method of sections 
through the buckled beam.
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Euler Buckling

The differential equation has multiple 
solutions:

This results in multiple bucking 
modes:
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Euler Formula
26

▪ For the critical buckling load we get then Euler’s Buckling Formula:

▪ With the shape of the buckled beam:

▪ The second moment of area (I) should be taken around the axis around which 
the beam buckles. This is in general the axis with the smallest second 
moment of area.



Euler Buckling : 
Effective length

▪ The Euler Formula we have derived 
here only deals with a beam with 
pinned supports on each end. 

▪ The type of support however greatly 
influences the critical load and the 
buckling behavior.

▪ Euler's formula can be extended 
towards other types of support by 
using the concept of the effective 
length.
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Critical Buckling stress
28

▪ Critical buckling stress:

▪ Using the definition of the radius of gyration 𝑟 =
𝐼

𝐴
:

▪ Le/r is the slenderness ratio



Buckling: 
Effect of eccentricity

▪ So far, we’ve looked at beams that were 
loaded through the centroid of the 
column

▪ Often, the load is offset from this axis: 
eccentric loading

▪ We calculate the behavior of a beam 
pinned at both ends with eccentric load.

▪ We can model the eccentricity with an 
axial load and a moment at the supports
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Buckling: Effect of 
eccentricity

▪ Centric load: P

▪ Moment: M=P*e 

▪ This means that the beam bends 
even under small loads without 
the beam buckling

▪ We solve the now inhomogeneous 
differential equation:
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Buckling: Effect of eccentricity
31

▪ For the deflection we then get:

▪ And for the maximum deflection:

▪ The critical bucking load is then



Buckling: Effect of eccentricity
32

▪ Maximum stress in the beam is given by the compressive stress and the 
bending stress:



Example Buckling

An aluminum column of length L and rectangular cross 
section has a fixed end B and supports a centric axial load at 
A.

Two smooth and rounded fixed plates restrain end A from 
moving in one of the vertical planes of symmetry but allow it 
to move in the other plane. 

(a) Determine the ratio a/b of the two sides of the cross 
section corresponding to the most efficient design 
against buckling. 

(b) Design the most efficient cross section for the column, 
knowing that L = 50 cm, E = 70 GPa, P = 22 kN and 
that a safety factor of 2.5 is required. 
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