Lecture 13:

Applications in nanotechnology
Governing differential equations

Solving beam deflection through
integration

Solving beam deflection through
superposition

Statically indeterminate beam
deflection




=PrL  Atomic Force Microscopy

A versatile tool for nanoscale biology

Source: veeco.com

= Single molecule resolution

= High resolution imaging in agueous
solution

= Nanomanipulation

= Single molecule mechanics

= Imaging of living cells




=PFL  AFM: aVersatile Tool for
Nanoscale Measurements

Cantilever

conductivity, surface potential, electrochemical potential,
ion currents, magnetism, NMR....and many more



=PFL  Single molecule resolution

Plasmid DNA on mica

= Single molecules can
be easily resolved

= Even the double helix!
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= Pyne et al. Small, 10, Nr16, 2014

Source: SciencePhotoLibrary
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Defect healing in DNA-lattices

100kHz ORT rate, 80Hz line rate (512x512 pixel) (tube, XY=14um)
Nievergelt et al, Small Methods 2019



=L Single Molecule
Force Spectroscopy
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Force resolution: 10s of pN; limited by thermal motion of the cantilever



=PFL Single molecule force spectroscopy

Force curves as a tool for single molecule mechanics
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=PFL  AFM cantilever beam

The gate to the nanoworld

= |n order to measure very fine features, the cantilever
probe needs to be very sharp and sensitive

= The deflection of the cantilever has to be measured very
precisely

= Two methods are often used:

» Optical beam deflection
» Piezoelectric strain sensing

Optical sensing Piezoresistive sensing
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Beam bending

Georg Fantner

q X
l rd—n' We bend the cantilever beam by applying
| W weaw a load at the end
1] ds
m; w(Xx) describes the amount of deflection

of the point on the cantilever from the

. . Zero axis
w - -
J; Ml Two points are a distance ds apart from
AR each-other on the bent beam

oy P From this we can get a relationship that
/ describes the curvature of the beam

B ME-231B/ STRUCTURAL MECHANICS FOR SV
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Beam bending -
Govemning equation

We want to find a relationship
between the beam deflection at a
point x on the beam as a function of
the load

We find 4 differential equations that
relate loads to the deflection and the
angle
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Georg Fantner
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Beam bending-Boundary
condition

To solve for the beam bending equation through
integration, we need boundary conditions

The type of support of the beam at its end
determines the internal forces and moments at
the ends, as well as its geometry

We have therefore two types of boundary
conditions:

These come
from static equilibrium and pertain to
force related quantities (V,M)

these
define the deformational and geometric
constraints for the angle and the
bending
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Beam bending - Abrupt
changes

= When we have mathematical discontinuities due to an abrupt change in load

or stiffness, we supplement our boundary conditions with the physical
requirement that the neutral axis must be continuous!

= Deflection and tangent needs to be the same coming from both sides of the
point of discontinuity:

Iimw(a) = limw(a
lim (a) lim (a)

limw'(a) = lim w'(a
lim (a) lim (a)

13



=PFL  Beam deflection :

= Solving through integration

= [f we want to solve beam equation through integration, we need to integrate 4

times:
/Elw’"’(az)da: = /q(a:)dw

1 1
Elw(x) = ////q(:z:)daz + EC’lx?’ + 5021’2 + Csx + Cy

= We know already that:

V:—/q(x)da:+01 M:—/q(ﬂf)d$+01$+02

= Therefore:
* We get C1 and C2 from the boundary conditions of M(x) and V(x)

« We get C3 from the boundary condition of the angle of deflection and C4 from the
boundary condition of w



EPFL Beam deflection -

% p , 2 J 2
7 PL x x||
E— o= ez 2| Solving through
" | superposition
Pa’ [x x]i p m
P w(x)=—|3|—| —|— 0<x<a
l 6EI| \a a
Tpo— sl s As long as the beams behave linearly elastic, we are
et w<x>=6—£[3[; -1] asxsl dealing with linear differential equations.
- For such a situation, we can separate a difficult load
J, l 1 l l “(x)_q,_c{s[i] = ’+ %) profile into simpler sub parts:
ud] (L) (L) "L N o (N L e o) L
if |__.| | 1) a2\ ) .
% ) We can then do the integrations over the individual g
Z wiry=-2 b0l 21 1ol Z] 45l Z| |2 rately.
e [l 40
_ To find the solution for the deflection due to the
% _ complex load profile, we can just sum up the
|4d—_/,‘:[ al' L. (2} (=) (=Yl deflections caused by the sub-loads g;.
w(x)= IZO—[JZO[Z] —~10 z] +|— I

r " e F, 1
THE A = \ W]

We can tabulate the deflection formulas due to
standard loads.
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Statically indetemminate
beams -
Solving through Integration

Often beams are supported more
that absolutely required for static
equilibrium.

A cantilever that is supported also on
it's unmounted end is considered a

We treat over constrained beams in
bending just like normal beams. The
static indeterminacy is solved
automatically through the use of the
boundary conditions to calculate the
iIntegration constants.
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Example:
Statically indeterminate
beams

= Solve the following statically

iIndeterminate system through
Integration of the beam deflection
differential equations. Calculate:

deflection

shear forces

bending moments

slopes

Approach:
« Set up load equation g(x)
Integrate the differential equations

« Solve for the reaction forces using the
boundary conditions




Beam Buckling

Euler Buckling
Effective length for buckling
Effect of eccentricity
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Stability- different criteria for
resisting loads

A= Strength: the ability of a structure to withstand a load
without the development of excessive stress

B=g Stiffness: the ability of a structure to withstand a load
¥ without developing excessive deformation.

Stability: the ability of a structure to withstand a load
- without experiencing a sudden change in configuration

Georg Fantner






PFL  Buckling is important from the macro to the
microscale

20 um
I
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Bending

Buckling

Buckling

Buckling is a type of instability that
occurs when a beam

much smaller than the
load necessary to reach the yield stress

In buckling, the failure occurs because
the applied load results in a
In a perpendicular direction.

Georg Fantner
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Euler Buckling

Two regimes of deformation when a beam is
loaded in compression:

If the axial load on a beam is small, the
change in length will be due to compressive
strain. P<P,,

If the axial load on a beam P is larger than
the critical load P, then the beam becomes
instable and a small perturbation will result
in buckling of the beam.

N
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Georg Fantner
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Euler Buckling

We can derive the Euler Buckling
formula using the method of sections
through the buckled beam.
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P
n=1
First mode

P
n=2
Second mode

P
n=3

Third mode

P
n=4
Fourth mode

Euler Buckling

The differential equation has multiple
solutions:

This results in multiple bucking
modes:

'-J 1.} =
nem< b1
7,2

P =




=PFL Euler Formula )

= For the critical buckling load we get then Euler’s Buckling Formula:

2
m EI
P = )
LE
= With the shape of the buckled beam:

w(z) =a sin(%a:)

= The second moment of area (I) should be taken around the axis around which
the beam buckles. This is in general the axis with the smallest second
moment of area.
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Pcr:

Effective Length L,as Function of Supports

End Conditions Effective Length
Fixed-Free Le=2L
Pinned-Pinned Le=L
Fixed-Pinned Le=0.7L
Fixed-Fixed Le=05L

Euler Buckling :
Effective length

The Euler Formula we have derived
here only deals with a beam with
pinned supports on each end.

The type of support however greatl
influg\%es the I3_Pitical load angthe >/
buckling behavior.

Euler's formula can be extended
towards other types of support by
usmgﬁthe conceépt of the effective
length.
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Critical Buckling stress

= Critical buckling stress: P T2E]

gcr — = —
A LA

= Using the definition of the radius of gyration r = \E ;

n’EAr*  7m’Er*  7’E
A 2 (L/r)

[

= L /ris the slenderness ratio
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Buckling:
N FNTEEN Effect of eccentricity

4_"(:.*

So far, we've looked at beams that were
loaded through the centroid of the
column

Often, the load is offset from this axis:
eccentric loading

W M = Pe We calculate the behavior of a beam

pinned at both ends with eccentric load.

—P
--________________________7I.

We can model the eccentricity with an
axial load and a moment at the supports
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Buckling: Effect of

P | |
e eccentricity
Centric load: P
C Moment: M=P*e
M(z) This means that the beam bends
Px)=P even under small loads without

the beam buckling

We solve the now inhomogeneous
differential equation:

a2 " Er. - gr’ ©
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Buckling: Effect of eccentricity

= For the deflection we then get:

P L , P
w(a;):e{tan<\/;-§> -sm( 77 %

>+(

P

Bl

7]

= And for the maximum deflection:

Wnaz = w(L/2) =¢ [sec (

= The critical bucking load is the

n

Pcr—

2 ET
_ 2

31



=P*L  Buckling: Effect of eccentricity

= Maximum stress in the beam is given by the compressive stress and the
bending stress:

_P - ec P L
Omaz = 74 2 ANV ET?
P ec P
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Example Buckling

An aluminum column of length L and rectangular cross
'sa\ectlon has a fixed end B and supports a centric axial load at

Twao smooth and rounded fixed plates restrain end A from
moving in one of the vertical planes of symmetry but allow it
to move in the other plane.

(@) Determine the ratio a/b of the two sides of the cross
section corresponding to the most efficient design
against buckling.

(b) Design the most efficient cross section for the column,
knowing that L = 50 cm, E = 70 GPa, P = 22 kN and
that a safety factor of 2.5 is required.
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